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Aim-	Research	ques:ons		

Early life PFASs exposure 

Cardiometabolic 
health in childhood 

1.   What	is	the	associa>on	between	prenatal	
and	postnatal	PFAS	mixture	exposure	and	
cardiometabolic	health	in	young	children?	

2.   What	is	the	role	of	the	inflammatory	status?	



Methods	

Study	popula:on:	
N=1,101	mother-child	pairs	from	the		Helix	sub-cohort.			
	
Pre-	&	Post-natal	PFAS	measurements	
•  Pregnancy:	PFOA,	PFNA,	PFOS	and	PFHxS		
•  Childhood	(mean	age	8	years;	range	=	6	to	12	years):	PFOA,	PFNA,	

PFUnDA,	PFOS	and	PFHxS	
	
Child	Cardiometabolic	health	(age	and	gender	z-scores)	
Serum	Lipids:	HDL	cholesterol,	LDL	cholesterol,	Triglycerides	(TG)	
Blood	Pressure:	Systolic	Blood	Pressure,	Diastolic	Blood	Pressure	
Waist	circumference	

h"ps://www.projecthelix.eu/	



  All (n=1101) 
  N (%) 
Cohort    

BIB 186 (17%) 
EDEN 144 (13%) 
KANC 188 (17%) 
MOBA 209 (19%) 
RHEA 166 (15%) 
INMA 208 (19%) 

Maternal education   
Low 166 (15%) 

Medium 377 (34%) 
High  558 (51%) 

Parity    
Nulliparous  494 (45%) 

Multiparous  607 (55%) 
Mean (min-max) 

Maternal age (years) 31 (16-44) 
Pre-pregnancy BMI (kg/m2) 25.0 (16.2-51.4) 

  All (n=1101) 
  N (%) 
Child gender   

Boys  605 (55%) 
Girls  496 (45%) 

Child ethnicity    
White European  988 (90%) 

Other  113 (10%) 
Mean (min-max) 

Age at examination (years) 8 (5-12) 
BMI (kg/m2 ) 16.9 (11.7, 29.6) 
HDL (mmol/L) 59.4 (27.1,112.1) 
LDL (mmol/L) 90.9 (0.7, 205) 
TG (mmol/L) 85.1 (24.8, 387.1) 
Systolic BP (in mm Hg) 99 (71-159) 
Diastolic BP (in mm Hg) 58 (37, 110) 
Waist Circumference (cm) 58 (21, 93) 

Maternal	characteris:cs	–	pregnancy.	 Child	characteris:cs.	

20%	OW/OB	1	

3%	low	2	

2%	high	3	

2%	high	3	

29%	high	4	
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  PFAS concentrations (in µg/L) 

  Maternal samples in pregnancy Child samples (6-12 years) 
  PFOA PFNA PFHxS PFOS PFOA PFNA PFUnDA PFHxS PFOS 
Samples 
>LOD (%) 

99.6% 97.8% 97.1% 100% 100% 99.5% 66.2% 99.7% 99.7% 

10th  0.80 0.23 0.19 2.36 0.95 0.18 0.02 0.10 0.73 
25th  1.34 0.42 0.30 3.99 1.17 0.29 0.03 0.18 1.22 
50th  2.22 0.69 0.53 6.15 1.53 0.47 0.06 0.34 1.93 
75th  3.29 1.10 0.88 9.16 1.96 0.73 0.10 0.56 3.11 
90th  4.37 1.58 1.39 14.41 2.43 1.14 0.17 0.82 4.63 
Spearman correlation coefficients     
Maternal samples                 
PFNA 0.61                 
PFHxS 0.65 0.29               
PFOS 0.64 0.46 0.71             
Child  samples                 
PFOA 0.20 -0.01 0.15 0.14           
PFNA 0.16 0.21 0.20 0.39 0.44         
PFUnDA 0.21 0.14 0.19 0.28 0.25 0.51       
PFHxS 0.26 -0.11 0.50 0.47 0.40 0.39 0.33     
PFOS 0.25 0.20 0.26 0.49 0.43 0.64 0.50 0.58   

PFASs	in	maternal	and	child	samples	



Rela:vely	low	PFAS	exposed	study	groups	

PFOA	 PFOS	 PFNA	 PFHxS	
PFOA	 PFOS	 PFNA	 PFHxS	

Prenatal	PFAS	levels	in	different	popula3ons	 Childhood	PFAS	levels	in	different	popula3ons	(~8	years)	



Methods-	Sta:s:cal	plan	

Hierarchical	Bayesian	kernel	machine	regression	(BKMR):	
Exposure:	log-transformed	PFAS	in	maternal	&	child	blood	

Outcome:	cardiometabolic	factors		

Confounders:	cohort,	maternal	age	(in	years),	parity	(nulliparous/mul3parous),	maternal	educa3on	level	
(low,	middle,	high),	maternal	pre-pregnancy	BMI	(in	kg/m2),	child	ethnicity	(White	European,	Other),	age	at	
examina3on	(in	years)	and	sex	(male/female).	
v Sensi3vity	analyses:	child’s	gender,	trimester	of	maternal	sample	collec3on	

1.   What	is	the	associa:on	between	prenatal	and	postnatal	PFAS	mixture	exposure	and	cardiometabolic	
health	in	young	children?	



Results	–	«PFAS	mixture	effects»		
Outcomes  Direction  Dose-

response 
Contribution to mixture 

(range: 0 to 1) 

Prenatal 
PFAS 

Postnatal 
PFAS 

HDL cholesterol Positive  Yes- 
strong 

PFHxS 
(0.55) 

PFUnDA 
(0.57) 

LDL cholesterol Negative No  PFOA 
(0.43) 

PFOA  
(0.59) 

Triglycerides Negative  Yes  PFHxS 
(0.32) 

PFUnDA 
(0.52) 

Systolic Blood 
Pressure 

Positive (for exposure 
levels >50th percentile) 

Yes  PFOS 
(0.40) 

PFNA  
(0.42) 

Diastolic Blood 
Pressure 

Null Unsure PFOS 
(0.34) 

PFNA  
(0.63) 

Waist 
circumference 

Negative Yes- 
strong  

PFNA 
(0.80) 

PFOA  
(0.97) 



HDL	cholesterol-	POSITIVE	 Waist	circumference	-	NEGATIVE	

Results	–	«individual	PFAS	effects»		



Methods-	Sta:s:cal	plan	

•  N=36	proteins	analyzed	by	three	Luminex	kits	(child	blood	samples)			
Adipokines, apolipoproteins, CC chemokines, CXC chemokines, interferons, interleukins, etc. 	
•  Integrated	network	by	applying	the	xMWAS	method:		

1.  pairwise	data	integra3on	
2.  visualiza3on	of	a	mul3-data	integra3ve	network	
3.  mul3level	community	detec3on.	

2.	What	is	the	role	of	the	child’s	inflammatory	status?	

Inflammatory	
proteins	(n=36)	

Cardiometablic	
factors	(n=5)	

Prenatal	&	
Postnatal	PFAS	

(n=9)	



Community 1 (dark blue):  
Postnatal PFUnDA, HDL-C 
  
Community 2 (light blue):  
Postnatal PFHxS and PFOS, WC, IL-1β, IL-6, leptin 
and MCP1 
 
Community 3 (green):  
Prenatal PFOA, PFNA and PFOS, TG, MIP1-β 
 
Community 4 (orange):  
Postnatal PFOA, LDL-C, IL-8 and HGF 
  
Community 5 (yellow):  
Postnatal PFNA, Systolic BP, and ten inflammatory 
proteins 



Summary	

Ø Pre-	and	Post-natal	PFAS	mixture	exposure	was	posi:vely	associated	with	HDL-C	and	
Systolic	BP,	and	nega:vely	associated	with	WC	and	TG.	

		
Ø Postnatal	PFASs	were	driving	these	associa:ons	with	the	PFAS	mixture.			

Ø Prenatal	PFAS	were	associated	with	poorer	cardiometabolic	health	(lower	HDL-C	and	
higher	WC),	but	these	associa:ons	were	weaker.		

Ø Most	PFAS	were	nega:vely	linked	with	inflammatory	proteinsà	phenotype:	Low	PFAS	
exposure	(pre	&post)	&	obesity-induced	inflamma3on	

Ø *	Prenatal	PFASà	IL1-betaà	adiposity*		



Summary-in	context	of	similar	studies	

-  Our	results	confirm	that	gesta3on	is	a	period	of	increased	suscep3bility	to	
the	detrimental	effects	of	PFAS.		
-  Health	Outcomes	and	Measures	of	the	Environment	(HOME)	Study,	Cincinna<,	Ohio	

	
-  Substan3al	uncertainty	around	this	health	outcome	

-  PFAS	exposure	in	childhood	were	mostly	nega3vely	linked	with	the	clusters	
of	cardiometabolic	factors-inflammatory	proteins.	

		
-  Confirm	the	role	of	PFAS	on	suppression	of	inflammatory	response	
-  suppressed	an<body	response	to	vaccina<on	and	increased	occurrence	of	asthma,	

sugges<ng	reduced	immunological	response,	as	well	as	lower	levels	of	proteomic	markers	
of	inflamma<on	

	



Zoom	out	
Ø  Need to protect vulnerable populations against serious health impacts linked to PFAS exposure. Even at 

background level exposures.  
 
Ø  The global elimination of PFOS and PFOA, the main PFAS found in biological samples worldwide, has 

been regulated through the Stockholm Convention (since 2009 for PFOS and since 2020 for PFOA) and 
this is covered by EU/EEA legislations.  

Ø  The restriction of manufacture of more PFASs has been approved and regulated (ECHA) and is to be 
applied in the EU/EEA.  

Ø  Room for more actionà substances are currently being evaluated one at the time (i.e PFOS, PFOA)  vs. 
entire families of chemicals (PFAS)à loopholes in current chemicals regulationsà “regrettable 
substitutions”.  

 
Ø  Barriers for a common solution1: Multiple uses- multiple sources of exposure - variability of this 

substance group - lack of a complete overview on substances and uses – new patents 
1.	Nordic	Council	of	Ministers.		2018.	Workshop	on	joint	strategies	for	PFASs	



ATHLETE	(Advancing	Tools	for	Human	Early	
Lifecourse	Exposome	Research	and	Transla:on)	
h"ps://athleteproject.eu/		

1. Set up a prospective Europe-wide exposome cohort covering the first two decades of the life course, 
building on 17 existing cohorts across Europe. 

2. Measure numerous environmental exposures (urban, chemical, lifestyle and social risk factors) during 
pregnancy, childhood, and adolescence. 

3. Link this “early-life exposome” with children’s biological responses and cardiometabolic, respiratory, 
and mental health. 

4. Estimate the societal impact of the exposome by calculating economic costs and impacts for children’s 
health, in order to guide evidence-based policies and administrative decisions. 

5. Implement interventions for reducing exposures related to the urban and chemical exposome. 
6. Translate acquired knowledge for policymakers and citizens. 
7. Make exposome data, tools and results available to researchers and policy makers in an online ATHLETE 

toolbox for use during and after the project, including an openly accessible exposome data infrastructure. 
8. Work together with nine projects as part of the European Human Exposome Network to implement the 

world’s largest network studying the impact of environmental exposure on human health. 
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